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Nowadays, harmonic analysis on Riemannian symmetric spaces (of Euclidean,
compact or non-compact type) is a rather advanced field with many different
aspects. Helgason’s Groups and Geometric Analysis offers an introduction to
those aspects which have been among the main research interests of the author
in the last thirty years. The diversity of subjects treated is great. Nevertheless
the author has managed to achieve coherence of presentation by clearly put-
ting forward a few main themes and basic problems. To illustrate this [ intend
to systematically go through the contents of the book.

Two main themes of harmonic analysis dominate the first part of the book:
firstly the theme of integral transforms (mainly Radon transforms, a few orbi-
tal integrals), and secondly that of invariant differential operators. The second
part of the book deals with the analysis of spherical functions on Riemannian
symmetric spaces, especially those of non-compact type: it provides a beautiful
illustration of the themes mentioned.

All of the above are illuminated in an introductory chapter which gives a
detailed treatment of the three basic examples: R2=M(2)/0(2)=group of
isometries of R? modulo the stabilizer of the origin (Euclidean type),
$22=0(3)/0(2) (compact type: spherical harmonics) and finally the hyperbolic
disk D={zeC; |z|<1} viewed as the homogeneous space SU(1,1)/SO(2) (of
non-compact type). A reader having no background in Lie group theory will
get an excellent impression of the role group actions play in harmonic analysis
on these spaces.

The next chapter gives a thorough treatment of the d-Radon transform
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(integration over d-planes) in R”. Treated are: the inversion, the support and
the Plancherel theorem. Applications to PDE’s and radiography (X-ray
transform) are briefly mentioned. After this the group theoretic structure which
underlies the Radon transform is analyzed and formulated in greater general-
ity. Since I found it illuminating, I'll briefly discuss this point of view here.

Let X=R" and let Y be the smooth manifold of all hyperplanes in R". Then
the (n —1)-Radon transform Ry is the map C°(X)—C>(Y) defined by

Ryf () = [f(x)dmy(x),

for fe C¥(X). Here dmv(x) denotes (n — 1)-dimensional Euclidean measure on
the hyperplane y CX corresponding to the point yeY. There is also a dual
Radon transform Ry: CX(Y)-C>®(X). If ¢ C®(Y) then Ry¢(x) is defined
by integrating ¢ over the closed submanifold x={yeY; xey} of Y. The map
Ry is the transposed of Ry. For fe C®(X), one has the beautiful inversion for-
mula

Hn—1)

f= I‘(%)I‘(n/Z)"'(—ZI;A)T RyRyf,

involving a fractional power of the Laplacian A. This formula goes back to
RaDoON [14] for n =3 and to JonN [11] for n>3. Its generalization to the d-
plane transform is due to HELGASON [7]. We'll now see how group theory
enters. In a natural fashion the group M(n) of isometries of R" acts transi-
tively on both X and Y. Thus X=M(n)/O(n) and Y=M(n)/F, where
F=Z,XM(n —1) is the stabilizer of the hyperplane x, =0 in R". The crucial
observation now is that Ry is equivariant for the natural actions of M (n) on
C¥(X) and C*(Y). Thus representation theory enters the scene. Moreover, the
property of equivariance suggests a generalization of the Radon transform to
more homogeneous spaces X=G/Hy and Y=G/Hy for the same Lie group
G. Two elements x e X and y €Y are called incident if x N 7@ as cosets in G.
A generalized Radon transform can now be defined by integrating functions
on X over sets y={x€X; x and y incident}. Similarly a dual transform Ry
can be defined. By the way, if G= U(4) Hy=U(1)XU@3) and
Hy=U(2)XU(2), then the maps yr~y and x~x"are Penrose correspondences,
see PENROSE [13].

Using the general set up indicated above, the author discusses the analysis
of Radon transforms for the non-Euclidean Riemannian symmetric spaces of
rank 1.

The second chapter deals with the algebra D(G/H) of invariant differential
operators on a homogeneous space G/H of a Lie group G. Geometric con-
structions such as separation of variables and taking radial parts are discussed
in generality. For Riemannian symmetric spaces G/H the algebra D(G/H) is
analyzed in great detail. From this point on the book may be considered as a
continuation of Helgason’s previous book [10].

Chapter 3 deals with linear group actions (in particular by finite reflection
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groups), and the corresponding invariant and harmonic polynomials. At the
end the Kostant-Rallis theory of adjoint orbits in a symmetric space is dis-
cussed.

Chapter 4 is devoted to the study of spherical functions and spherical
transforms on a Riemannian symmetric space X=G/K of the non-compact
type. Here G is a real semisimple Lie group with a maximal compact subgroup
K. The algebra D(X) of invariant differential operators is commutative. Its
joint eigenspaces

E(X;x) = {feC*(X); Df=x(D)f, DeD(X))

are parametrized by characters xeD(X). The spaces E(X,x) are invariant for

the left regular representation L of G on C*(X). Basic problems put forward

by the author are:

(1) to describe the joint eigenspaces E(X,x),

(2) to determine for which xeD(X), the restriction of L to E(X,x) is irreduci-
ble,

(3) to decompose functions on X in terms of joint eigenfunctions (Fourier
decomposition).

Historically, the third of these problems was solved first, by Harish-Chandra

[5]. The set (X} can be parametrized in a natural fashion by ag /W, where a

is a maximal abelian linear subspace of the Killing orthocomplement of Lie(K)

in Lie(G), and where W is the finite reflection group determined by the a-roots

in Lie(G). If Aeag, then the corresponding element of D(X} is denoted y.

The space E)(X)=E(X, x)) contains a unique left K-invariant function ¢, with

dp(e)=1, the so-called elementary or zonal spherical function. Explicitly, ¢,

can be given as a Radon transform of a function of exponential type. Any K-

invariant function fe CZ(X) can be decomposed as

f6) = [0l

Here d\ denotes suitably normalized Lebesgue measure on ia*. Moreover,
fA)=xf (x)¢ a(x)dx is the so called spherical Fourier transform of f.
Finally, ¢(A) is the famous c-function, which occurs as leading coefficient in a
converging series expansion describing the asymptotics of ¢\(x) as x tends to
infinity in X. Originally, Harish-Chandra proved this result in [5] for a space &
of K-invariant rapidly decreasing functions on X (the proper analogue of the
Euclidean Schwartz space), subject to two conjectures being true. One of these
conjectures involved an estimate for the c-function, the other density of a space
of wave packets in &. The first conjecture was solved by GINDIKIN and KAR-
PELEVIC [4], who expressed the c-function as a product of quotients of I'-
functions. The other was solved by HARISH-CHANDRA [6].

Using the above inversion formula for C°-functions, HELGASON [8] proved
a Paley-Wiener theorem for the spherical Fourier transform, except for certain
estimates for the coefficients in the series expansion of ¢,. The missing esti-
mates were provided by GANGOLLI [3]. ROSENBERG [15] discovered that it was
possible to first prove a support result on wave packets
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[ar)AM)e)]*dA,

with 4 a W-invariant entire function of Paley-Wiener type on ag, and to use
this to give a much simpler proof of the inversion formula for C°-functions.
The present book is the first to give a self contained account of these short
proofs of the inversion and the Paley-Wiener theorem. It may be interesting to
know that after the appearance of this book an even shorter proof of the
Paley-Wiener theorem has been discovered by FLENSTED-JENSEN [2]. His proof
completely avoids the consideration of asymptotics of spherical functions:
instead via an ingenious variation on Hermann Weyl’s unitary trick a reduc-
tion to the complex and then the Euclidean case is given. A drawback of this
method is that it does not give the inversion formula.

The above questions (1) and (2), taken up first by HELGASON [9] have also
given rise to some beautiful developments in the subject. In the book they are
only dealt with for the case of the hyperbolic disk D, in the introductory
chapter. It turns out that E)(D) can be characterized as the image under a
generalized Poisson transformation of the space of hyperfunctions on the
boundary 3D ={zeC: |z|=1}: the classical integral representation of harmonic
functions on the disk is a special case of this. The analogue of the above
description of eigenfunctions by Poisson transformations for a general Rieman-
nian symmetric space of the non-compact type was conjectured and partially
proved by HELGASON [9] and finally proved by KASHIWARA ET AL. [I2]. An
excellent introduction to this material can be found in SCHLICHTKRULL [16].

The book ends with a chapter on (the relatively standard) Fourier analysis
on a Riemannian symmetric space of the compact type.

Each chapter of the book concludes with a set of exercises and in addition a
set of historical notes which is usually very complete and helpful. In fact I
noticed only one omission: in the discussion of asymptotics of zonal spherical
functions a reference to the enlightening paper of CASSELMAN and MILICIC []]
is missing,

The first third of the book can certainly be used as a textbook for beginning
graduate students. The rest requires a greater knowledge of Lie group theory
which however nowhere goes beyond the contents of the author’s previous
book [10]. The present book will also be an excellent source of reference for
experts. No doubt it will become a new standard in the field.

REFERENCES

1. W. CasSELMAN, D. MiLici¢ (1982). Asymptotic behavior of matrix
coefficients of admissible representations. Duke Math. J. 49, 869-930.

2. M. FLENSTED-JENSEN (1986). Analysis on non-Riemannian symmetric
spaces. AMS Reg. Conf. Ser. 61.

3. R. GangoLLI (1971). On the Plancherel formula and the Paley-Wiener
theorem for spherical functions on semisimple Lie groups. Ann. of Math.
93, 150-165.

4. S.G. GINDIKIN, F.I. KARPELEVIC (1962). Plancherel measure for Riemann

38



10.
11.
12.
13.
14.

15.

16.

symmetric spaces of nonpositive curvature. Dokl Akad. Nauk. SSSR 145,
252-255.

HARISH-CHANDRA (1958). Spherical functions on a semisimple Lie group,
I and II. Amer. J. Math. 80, 241-310 and 553-613.

HARISH-CHANDRA (1966). Discrete series for semisimple Lie groups, II.
Acta Math. 116, 1-111.

S. HELGASON (1964). A duality in integral geometry; some generalizations
of the Radon transform. Bull. AMS 70, 435-446.

S. HELGASON (1966). An analog of the Paley-Wiener theorem for the
Fourier transform on certain symmetric spaces. Math. Ann. 165, 297-308.
S. HELGASON (1970). A duality for symmetric spaces with applications to
group representations. Adv. Math. 5, 1-154.

S. HeLGasoN (1978). Differential Geometry, Lie Groups and Symmetric
Spaces, Academic Press, New York.

F. Joun (1955). Plane Waves and Sperical Means, Wiley (Interscience),
New York.

M. KasHIWARA, A. KowaTa, K. MINEMURA, M. OKAMOTO, T. OSHIMA,
M. Tanaka (1978). Eigenfunctions of invariant differential operators on
a symmetric space. Ann. Math. 107, 1-39.

R. PENROSE (1967). Twistor algebra. J. Math. Phys. 8, 345-366.

J. Rapon (1917). Ber. Verh. Sachs. Akad. Wiss. Leipzig. Math.-Nat. ki
69, 262-2717.

J. ROSENBERG (1977). A quick proof of Harish-Chandra’s Plancherel
theorem for spherical functions on a semisimple Lie group. Proc. Amer.
Math. Soc. 63, 143-149.

H. ScHLICHTKRULL (1984). Hyperfunctions and Harmonic Analysis on
Symmetric Spaces, Birkhduser, Boston.

39



